

Page 1 of 15

BEYOND ITIL:

A MODEL FOR EFFECTIVE

END-TO-END RELEASE MANAGEMENT

(THE SEVEN HABITS OF HIGHLY EFFECTIVE
RELEASE MANAGERS)

Page 2 of 15

INTRODUCTION

There is no universal definition of what Release Management is. Different standards
and publications define Release Management, or Release Management activities,
differently and Release Management is often an adjunct to a standard or process
rather than a standard or process itself.

 Prince 2 talks about controlling “release packages” within the Configuration
Management section.

 The V-Model (German government standard), which takes a more holistic view of
the development process, again only mentions Release Management as a
relatively minor activity performed as part of Configuration Management.

 ITIL talks about Release Management within the context of “managing changes to
IT services” and states that it should be used for “large or critical hardware roll-
outs, major software roll-outs and bundling or batching related sets of changes”
implying that it is not used for managing all of the software that goes out of the
door.

Release Management has a different meaning depending on where you’re looking at
it from. If you’re looking from a production operations or service management
viewpoint then, according to ITIL, Release Management is all about managing change
to IT services.

However, if you’re viewing Release Management from the development organisation
then Release Management is about the definition, co-ordination and delivery of
releases (new versions) of the organisation’s products1.

This can be very confusing and is often misunderstood by people, who assume that
there is a single Release Management process at work within the IT organisation.

If I am responsible for delivering IT applications and solutions where do I go to find
best practice Release Management processes? Prince 2 barely mentions Release
Management (and is only focused on those changes delivered by projects), the V-
Model includes little mention of it and ITIL only considers Release Management from
an IT operations perspective.

At the present time ITIL is very much in vogue and therefore when one thinks of
Release Management one almost inevitably thinks of ITIL. However, this is only part
of the story, ITIL is really only concerned with the final implementation of the release.
Release Management in this respect is predominantly a co-ordination role. There is
an analogy of an airport where the Release Manager is in the control tower making
sure that each aeroplane (release) arrives on schedule and that the correct ground
handling etc is in place to meet it.

If we want to manage releases end-to-end then we need to look further than ITIL; ITIL
does not tell us how we should manage a release throughout the development
lifecycle.

1 The term ‘product’ refers to an IT deliverable, such as an application, not a business product
such as a pension or a mobile phone contract. From the definition “manufactured in response
to requirements”

Page 3 of 15

Figure 1 illustrates the roles and relationships in a typical organisation that develops
its own IT solutions.

Figure 1 IT within a typical organisation

The scope of this white paper is Release Management within the IT development
organisation and covers all products delivered by IT development to the IT operational
organisation. This paper does not replace ITIL, we are staunch advocates of ITIL and
it’s a great framework. Rather, it provides a model that works alongside ITIL’s Release
Management.

The scope must also include aspects of Change Management because of the close
ties that Change and Release Management have and we will see that Release
Management has certain requirements of Change Management.

This paper does not attempt to tell you how to measure release risk or how to run
release meetings. Instead it describes a proven framework for Release Management
and describes an approach to implement it.

This is best practice Release Management that you can actually implement to
manage the delivery of IT products.

IT OPERATIONSIT DEVELOPMENT

Develop and deliver

applications

Provide and manage

IT Services

BUSINESS USERS

Issue IT requirements

Page 4 of 15

RELEASE MANAGEMENT IN IT DEVELOPMENT

Whilst ITIL states that Release Management should be used for “large or critical
hardware rollouts, major software rollouts and bundling or batching related sets of
changes into manageable-sized units” from a development perspective, we want to
apply Release Management to all of the changes we deliver regardless of whether
they deliver a small bug fix or a whole new application.

DEVELOPMENT ARCHITECTURE

Figure 2 illustrates where Release Management fits in the development environment.
You’ll notice that there is a Release Management function sitting in the operational
area. This is ITIL’s Release Management function. In the development environment
Release Management has been split into the two important functions: Release
Planning and Release Control.

Figure 2. Where does Release Management fit?

Operational Release Management is concerned about release into the production
environment but in the development organisation we also want to control releases into
formal testing. The term “formal testing” is used to represent testing where the
environment is strictly controlled; the contents are documented and all changes go
through a process where they are recorded, approved and communicated in advance.

DEVELOPMENT

OPERATIONAL

DEVELOPMENT

Change

Management

Build

Management

Problem

Management

PRODUCTION

Change

Management

Problem

Management

TESTING

Helpdesk

Release

Planning

Release

Control

Release

Management

Business

Users

Page 5 of 15

The transition between informal and formal testing will occur somewhere in the testing
lifecycle after unit testing and before pre-production testing. Where this transition is
set represents a trade-off between lower cost of change and lower risk of failure.
Certainly the user acceptance testing phase would normally be considered formal.

Whilst ITIL is busy managing changes (RFCs) to IT services, this is not how changes
to IT products are delivered: a business change (what the user wants) is broken down
into technical changes (what actions are required to give the user what they want).
These technical changes are implemented by new product versions which tend to be
bundled into releases.

TYPES OF RELEASE

When people talk about a release they are generally referring to the simultaneous
delivery of new versions of a number of IT products on a particular date. To confuse
things we then call each of these new versions a release as well.

We need to manage both these types of release so we have to set some terminology
so that we can differentiate between the two. Therefore for the rest of this document
we will use the terms “Product Release” to refer to the release of a new product
version and “Composite Release” to refer to the concurrent release of a set of product
releases.

A composite release may exist for two reasons:

 A number of product releases must be released at the same time because they
are interdependent, either technically (have an interface) or from a business
perspective (both needed to implement a change), or

 Policy dictates that product releases should be grouped where possible to
minimise risk or reduce cost.

Figure 3 illustrates the development life cycle of the different types of releases:

Figure 3 Development life cycle of different types of releases

UAT
SYSTEM

TEST

DEVELOPMENT

& UNIT TEST

PRE-PROD

TEST

SYSTEM

TEST

DEVELOPMENT

& UNIT TEST

SYSTEM

TEST

DEVELOPMENT

& UNIT TEST

UAT
PRE-PROD

TEST

INTEGRATION

TEST

RELEASE

RELEASE

UAT
SYSTEM

TEST

DEVELOPMENT

& UNIT TEST

PRE-PROD

TEST

RELEASE

UAT
SYSTEM

TEST

DEVELOPMENT

& UNIT TEST

PRE-PROD

TEST

Single product release

Composite release of products with no interdependencies

Composite release of interdependent products

Page 6 of 15

Release policy and interdependencies between products will determine whether there
is one composite release for all products, multiple composite releases (one per related
product group such as Pensions, CRM or HR) or on-demand composite releases that
are only created when there are interdependencies between product releases.

Page 7 of 15

THE SEVEN HABITS OF HIGHLY EFFECTIVE RELEASE
MANAGERS

1. DEFINE RELEASE POLICIES

Release policies are created to enable a common, consistent and communicated
approach to Release Management. The policy will dictate the rules that must be
followed and reflects the organisation’s attitude to risk.

There is a balancing act between frequency of releases and the number of changes in
a release. Increasing the frequency of releases increases the risk of production
problems. Increasing the number of changes in a release increases the complexity of
the release which in turn increases the risk of not being able to deliver it.

Multiple release policies will normally exist. Policies exist in a hierarchy mapped over
the organisation, becoming more specific at lower levels.

The top level release policy, applicable across the organisation, might include some
overall principals, such as grouping changes together where possible to limit the
number of releases required and describing the release policy hierarchy, the process
for managing the release policy and the process for dispute resolution.

Lower level policies applied to groups of products, or to individual products, will
contain more specific statements whilst remaining in accordance with, and adhering
to, the higher level policy. This policy hierarchy is illustrated below in figure 4.

Figure 4 Multiple policies operating at different levels

2. ASSIGN ROLES AND RESPONSIBILITIES

Release Management does not look after itself. It is not simply a case of setting a
release policy and then sitting back and watching as all the workers deliver releases
on time and to budget without adverse impact.

Release Management is very much a hands-on activity. Whilst policy gives direction
when making decisions, there are often difficult choices that need to be made taking
into account a complex set of factors. There is often a great deal of negotiation
required by the Release Management process. It is not possible to plan for every
outcome within the process and to document what must be done in each case.
Instead there needs to be an experienced Release Manager at the helm capable of

IT ORGANISATION

Product Group

Group

POLICYOverall

POLICY

Product

Product

Product

Product

Product

Product

Product

POLICY
Product

Product

POLICY

Page 8 of 15

facilitating the negotiation between the various stakeholders whilst adhering to policy.
There are no hard and fast rules, intelligence is definitely required.

The following roles are required for Release Management. With the exception of the
overall Release Manager these roles are generally not full time activities but there still
needs to be one person assigned the responsibility. A single person could of course
be assigned many roles.

Role Responsibilities

Release Manager Managing Release Policy

Managing the Release Control team

Resolving disputes

Availability and accuracy of the Release Schedule

Product Release Manager

(for each product)

Determining the product’s Release Policy (if required)

Defining new Product Releases

Approving product release requests

Release Owner

(for each release)

Managing the content of the release

Processing Release Gates

Maintaining status information on the Release Schedule

Ensuring conformance with relevant Release Policy

Raising release request

3. PLAN RELEASES

There are two distinct activities within IT development Release Management: planning
and control.

Release planning manages the content of releases. An owner is assigned to each
release and part of the owner’s responsibility is to manage the list of changes that are
included within the release or, in the case of a composite release, the product
releases that are included.

The earlier release planning starts the better. When a change request is received from
the business it should appear very quickly, at least provisionally, on the release
schedule. Regular release dates may be set a year or more in advance whilst
releases for particular long-running projects may be set even further in the future. A
central release schedule should be easily accessible to everyone involved in the
development and delivery process and should list the releases by date and show the
status and composition of each one (what changes are included and the status of the
changes).

Release planning is closely related to change management: part of the change
assessment activity is to negotiate a release that a given change can be included
within. The release owner will need to organise meetings with the development and
testing teams to determine the feasibility of implementing the change within the time
frame and available resources of a particular release.

4. CONTROL RELEASES

Page 9 of 15

Release control is about reconciling the plan with reality. It’s about making sure that
releases (and builds) are delivered according to plan with appropriate documentation,
are properly authorised and contain the changes that they were planned to contain.

Release control will also make sure that builds and releases are securely stored,
preferably in the organisation’s Definitive Software Library (DSL).

Release control would normally be operated by a single team for the whole
organisation. There is no specific knowledge about any of the releases required, it is
simply a case of following the prescribed procedures when release requests are
received

5. DEFINE RELEASE GATES

Release gates are pre-defined checkpoints in the lifecycle of a release and are used
to verify satisfactory progress of the release at key points. The earlier we can spot
problems with a release then the more opportunity we have to mitigate the problems
or exclude problematic changes that could otherwise threaten the delivery of the
whole release.

It’s obviously undesirable to pull a change out of a release but if you have to do it then
you want to do it as early on as you can to minimise the disruption it will cause to the
release. Complications associated with removing changes from a release include
backing out documentation and code changes, amending test plans and retesting to
ensure the changes have been successfully backed out.

What release gates exists and where they are positioned very much depends on
organisation-specific details such as the development and testing lifecycle and the
number of product interdependencies. A first gate would usually be placed before
development starts. At this point all changes in the release would need to be
approved otherwise they will be removed from the release. Other release gates may
relate to phases within the development lifecycle. For example: to require high-level
design to have been completed by a certain time.

6. SEPARATE BUSINESS CHANGE FROM TECHNICAL CHANGE

Business changes and technical changes are separate entities. Often an organisation
will try to manage technical activity under the auspices of the request logged by the
business users but this is not the best solution as it does not allow for effective
Release Management.

A business change documents what the users require of IT to meet a particular
business need. This will normally be expressed at a high level, for example “Enable
dual currency handling”, and the change document is used as a vehicle to record and
manage the interaction between the business and IT and, once agreed, it becomes
the contract between the two parties.

A business change is not, however, an appropriate vehicle for recording the detail or
progress of the technical changes that will deliver that business change. We need a
way of tracking the individual technical changes otherwise how can we ever assess
the status?

Figure 5 shows how technical changes are raised during the impact analysis phase of
the business change. The technical changes’ impact assessments are aggregated to

Page 10 of 15

form the impact assessment at the business change level. Business change approval
is cascaded to the technical changes which will then be implemented. Once all the
technical changes have been implemented then the business change can be closed
as complete.

One business change will be implemented by one or more technical changes but one
technical change will only ever apply to a single business change.

Figure 5 Lifecycle of Business and Technical Changes

For effective Release Management we also need to restrict a technical change to a
single release of a single product. In other words a technical change is implemented
by a product release and each product release implements one or more technical
changes. This enables us to very quickly see what the status of a release is: look at
the status of the associated technical changes.

Business

Change

OPEN

APPROVE

CLOSE

raises

ASSESS
impact assessment

OPEN

ASSESS

APPROVE

IMPLEMENT

CLOSE

ASSESS

ASSESS

ASSESS

Technical

Change

OPEN

APPROVE

IMPLEMENT CLOSE

Technical

Change

cascade approval

IMPLEMENT IMPLEMENT

IMPLEMENT

Technical

Change

Business

Change

Technical

Change

Technical

Change

Technical

Change

Business

Change

Technical

Change

PRODUCT A

R1 R2 R3 R4 R3

PRODUCT B

R35 R36 R37 R38 R38

Page 11 of 15

Figure 6 Relationship between business and technical changes and product releases

Figure 6 illustrates the relationship between business changes, technical changes and
product releases. It is clear that we can easily find the status of a business change
(what is the state of each technical change) and we can see exactly what a given
product release delivers.

7. MANAGE BUILDS

A build is a candidate for a release. If the build passes testing then it will be released
otherwise it will be failed and a new (improved) build will be requested. This continues
until a build passes all of the required tests or only contains errors that we are happy
to live with in production.

Release Management should control the builds that are passed to formal testing. The
reason for this is that should the build succeed then this build is what will be released
and should be deployed, unchanged, in production. We need to make sure that we
capture the build and secure it, ensuring that what is signed-off in the test
environment is what will be deployed in production. This last point is important so I’ll
repeat it: ensuring that what is signed-off in the test environment is what will be
deployed in production.

Composite releases (with interdependent products) are more complicated to manage.
When a build of a composite release is created we need to record the builds of the
product releases within it.

In the following example we are planning a new release of the “Accounting Systems”
group of products. This group of products have a number of interfaces and must be
tested and released together.

In this new release, R8, we need to make changes to the “General Ledger” and
“Online Expenses” products and therefore we will deliver new releases of them. The
“Bank Rec” product is not changing and we will continue to use release 10.

During the development of the release, builds will be released for formal testing.

Formal testing is performed at the composite level so we will be testing the
combination of the products. Each time we receive a new build of one or more
products the new combination represents a new build of the composite product:

Accounting Systems – R7

General Ledger – R5

Online Expenses – R3

Bank Rec – R10

Accounting Systems – R8

General Ledger - R6

Online Expenses – R4

Bank Rec – R10

Accounting Systems – R8 Build 1

General Ledger - R6 Build 1

Online Expenses – R4 Build 1

Bank Rec – R10

Accounting Systems – R8 Build 2

General Ledger - R6 Build 1

Online Expenses – R4 Build 2

Bank Rec – R10

Accounting Systems – R8 Build 9

General Ledger - R6 Build 5

Online Expenses – R4 Build 8

Bank Rec – R10

Page 12 of 15

Logically, we only deploy builds of the composite release into the testing
environments, we never deploy individual product builds. The testers, or environment
owners, should raise requests asking for “Accounting Systems – R8 Build 9” to be
deployed in their environment, not for individual product builds. This way we know that
only pre-defined and approved combinations of the product builds are being tested.
It’s no use testing one combination of builds and then releasing another.

Physically we deploy individual products. A test environment will have a build of the
composite release recorded against it. The physical machines within the test
environment will have the individual product builds recorded against them. In the
above example updating a test environment from “Accounting Systems – R8 Build 1”
to “R8 Build 2” only actually requires computers hosting the “Online Expenses” system
to be physically upgraded from “R4 Build 1” to “R4 Build 2”. Of course if we have an
environment where we want to test the implementation of the release (such as pre-
production) then each time we upgrade the environment we would probably refresh it
to be as production first.

Build release notes are generated for each product build but there is also an
aggregate build release note at the composite level, describing the difference between
the previous build and this one.

Builds, like releases, should be planned. The testing team(s) should know in advance
what changes and fixes are going to be delivered in the build and when it will be
delivered.

Page 13 of 15

DEVELOPING A RELEASE MANAGEMENT PROCESS

The objective is to develop a Release Management process that is negotiated
between:

 The implicit requirements, or constraints, of the current process. Once the
as-is position is mapped out it often becomes apparent that certain actions which
at first sight, or when considering best practice, would be dismissed, hide site
specific requirements or constraints that should not be ignored in the process
design.

 The stated goals of the process review. The goal may simply be “to align with
best practice”. Alternatively there may be some particular requirements or
constraints to consider, perhaps in accordance with future plans.

 Best practice.

Out of this process we would expect the following deliverables:

 Process flows showing the as-is picture; how Release Management is currently
performed and how it interoperates with other disciplines such as Change
Management.

 Process flows showing the to-be picture.

 A roadmap of how Release Management can be implemented in self-contained
steps, each with benefit and cost.

There are a number of ways to document process workflow but the simplest and most
effective is to use swimlane diagrams, which show how a process flows between the
different participants, supported by lower level “use cases” or flowcharts where
necessary to expand into operational procedures.

A common mistake when developing new processes is to make the person who will
be responsible for operating the process also responsible for defining the process. It
seems like an obvious decision to make, however the mindset required to architect
and engineer a process is different from the mindset required to manage and operate
a process. The ability to architect the process is a rarer skill than managing a
documented process so if you do have someone capable of architecting your process
also managing your process then you’re probably wasting their talents!

THE PROCESS – STEP 1

Determine the as-is position

The first step is to understand the current processes that are being operated. Even if
there are no documented processes and even if these processes are inefficient or
ineffective there must be some existing processes otherwise changes would not be
getting implemented in production or sent to customers.

The as-is position should not be dismissed, people may have good reason for the
process they currently follow or at least they may think that they have good reason,
even if they’re wrong because they don’t fully understand the subject.

Page 14 of 15

Ignoring the existing process users’ views and opinions is a sure-fire way to build in
resistance to any new processes that are implemented.

THE PROCESS – STEP 2

Understand the bigger picture

Release Management does not operate in isolation. Release Management has
relationships with many other disciplines including: Change Management, Problem
Management, Testing, Deployment, Project Management, Configuration & Build
Management.

The most important link is the one with Change Management. The key to effective
Release Management is to have effective Change Management surrounding what
changes go into the release and changes to the release itself. If the Change
Management process is weak then it will result in impact to and additional work for
Release Management

Release Management processes will need to be designed such that they interoperate
with these peripheral processes, undoubtedly there will be some changes required to
the peripheral processes to enable this interoperability and to ensure an efficient and
effective end-to-end process.

THE PROCESS – STEP 3

Develop the to-be vision

The to-be vision is where you ultimately want to get to. It may be that the vision is not
immediately achievable. It may never be achievable. However, it is important to
determine that vision because even if you never achieve it at least you can ensure
that you’re heading in the right direction. At times you may have to deviate for
practical reasons.

THE PROCESS – STEP 4

Develop roadmap to achieve vision

Implementing the vision would normally be broken down into bite-sized chunks, each
being complete and providing a level of benefit.

Normally you would want to start with the area that will give the greatest benefit
(remove the greatest pain) or achieve the greatest benefit possible in the shortest
time. It’s determined by how you want to implement the vision. The benefit delivered
by each subsequent step will probably decrease. This is one of the reasons why
visions do not get fully implemented: the final steps aren’t worth it.

Usually the most sensible first step to take is to install a gatekeeper between the
development and production environments. At the very least start recording what is
passing through the gate, but better still put a control process in place, even if
rudimentary.

Page 15 of 15

Final Thoughts

It is impossible to provide an exact recipe for Release Management as so much depends on the
environment and existing processes that it will operate within; it is not a case of one-size-fits-all.
Yet here we have presented a core model, a model that can form the basis of a sound Release
Management process regardless of the environment. The work now is in implementing the model
within a particular context.

We need to look beyond ITIL for Release Management. Release Management will continue to
confuse people until the Release Management of IT products is seen as an independent function
that interoperates with ITIL, rather than being a part of ITIL.

About Propel Systems

Propel Systems develops software and process solutions to enable organisations to work more
effectively. Propel Systems’ flagship product, Cimera, enables bespoke management solutions
to be built in a fraction of the time of conventional systems. Cimera comes pre-configured to
support Release Management and can be used to manage releases, builds, release notes,
release requests, changes, problems, projects etc.

About the Author

Gwyn Carwardine is one of the founders of Propel Systems. He is passionate about making
computer and human systems work more effectively. He has 20 years experience of delivering
bespoke pragmatic solutions to companies, specialising in the areas of Configuration, Change
and Release Management.

197 Cooden Sea Road
Bexhill on Sea

East Sussex
TN39 4TR

t: +44 (0)8456 447 554

 e: info@propelsystems.com

Release Management white paper [v1.9]

